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Effective surface viscosities of a particle-laden fluid interface
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The Einstein formula for the effective shear viscosity of low Reynolds number suspension flows is gener-
alized to the case of flat, low-concentration, particle-laden interfaces separating two immiscible fluids. The
effective surface shear and dilational viscosities of this system is found to be 7;S=§(7;1+ m)R¢ and {,=5(7,
+15)R ¢, correspondingly, where 7, and 7, are the shear viscosities of two bulk fluids and ¢ is the surface
concentration of spherical particles of radius R. The formula is found to be in excellent agreement with data
obtained using multicomponent lattice Boltzmann equation simulation.
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I. INTRODUCTION

To minimize total interfacial energy, suspended particles
can self-assemble on the surface of a droplet of one liquid
suspended in a second, immiscible, liquid [1]. In fact, this
process was observed by Ramsden [2] as long ago as 1903.
Rather more recently, rekindled interest in the same, essen-
tial, phenomenon has focused on the important use of liquid-
liquid interfaces as templates for the self-assembly of micro-
particles [3] and, still more recently, for nanoparticles [4,5].
Consequently, the properties of colloidal particles at liquid-
liquid interfaces have attracted significant recent attention.

In fact, systems similar to those identified above have
wide-ranging current applications, which we proceed selec-
tively (and briefly) to highlight, now. Surfactant-free Picker-
ing emulsions, stabilized by solid particles, are routinely en-
countered in recovery, separation, and cleaning of oil,
cosmetic preparation, and waste water treatment. Recently
added to this list are new applications with environmental
implications [6] and new commercial applications, from re-
mediation [7], through the production of porous media [8], to
paints with new optical properties [9]. Further afield, drop-
lets with micron-scale, particle-laden interfaces serve as pro-
totype vesicles, or colloidosomes, and facilitate the study of
interparticle interactions at interfaces (but are probably more
important as prototype selectively permeable membranes
which transport submicron particles into the colloidosome,
but exclude micron-sized particles [10]). Still further afield,
advances have been made in the use of self-assembled sub-
micrometer colloidal particles at liquid-liquid interfaces to
investigate mesoscale structure formation and two-
dimensional melting. All the systems mentioned above share
in common the fact that the particle-laden interfaces which
comprise them are central to any understanding.

The dynamic properties of particle-laden interfaces are
strongly influenced by direct interparticle forces (capillary,
steric, electrostatic, van der Waals, etc.) and complicated hy-
drodynamic interactions mediated by the surrounding fluid
[11-14]. At macroscopic scales, the rheological properties of
the particle-laden fluid interface can be viewed as those of a
liquid-liquid interface with some effective surface viscoelas-
tic properties described by effective surface shear and com-
pressional viscoelastic moduli.

In fact, a particle-laden interface may be viewed as a
quasi-two-dimensional colloid. The effective shear viscosity
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of a three-dimensional suspension of solid particles can be
calculated when the concentration of particles is low, so that
interactions of particles can be neglected. The resulting ef-
fective shear viscosity 7. for this case was calculated by
Einstein [15] back in 1906 in the low Reynolds number
(Stokes’ regime) limit and is given by the Einstein formula

5
Mot = 7]<1+5¢v)7 (1)

where 7 is the shear viscosity of the bulk fluid and ¢y is the
total volume fraction occupied by the particles. This formula
describes experimental data at low concentrations very well,
and, further, can be used as a starting approximation for
more complicated systems in which the interparticle interac-
tions of a different nature cannot be any longer neglected.
Importantly, such a constitutive relation as that given in Eq.
(1) can be used to simplify numerical calculations by allow-
ing one to avoid explicit modeling of the flow-advected spe-
cies.

Following Einstein, this paper aims to obtain expressions
for the effective surface viscosities of a fluid interface laden
with micron-scale particles at low surface concentration. The
main restriction in our analysis arises from the fact that par-
ticles at the interface between two different fluids can, in
general, take any contact angles. We optimize symmetry and
assume a particle-liquids contact angle of /2 rad. Calcula-
tion of the mobility of the widely separated particles at the
surface of a fluid presents a complicated problem [12] but
considerable simplification can be achieved in this special
case when surface tensions in the system are large and give a
contact angle of 7/2. Then, the particles will embed sym-
metrically in each of the separated fluid phases and the prob-
lem acquires additional symmetry so that derivation of effec-
tive interfacial properties can be pursued precisely along
lines of the calculation of Einstein.

First, in Sec. II, we present background details. In Sec. III
we derive an analog of the Einstein’s formula for the effec-
tive surface viscosities of low-concentration particle-laden
interfaces with large interfacial tension between two immis-
cible fluids, then, in Sec. IV, test the validity of our result and
consider larger concentrations (by using lattice Boltzmann
simulations). We present our conclusions in Sec. V. Details

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.016306

S. V. LISHCHUK AND I. HALLIDAY

of the simulation method and an analysis of the stability of
the system studied are presented in the two appendixes.

II. BACKGROUND

It is important to set the present work within the context
of two particular previous calculations, also performed in the
zero Reynolds number approximation. First, in Ref. [16],
Tambe and Sharma consider a fluid-fluid interface with struc-
ture. They take an interface to consist of a thin but three-
dimensional interfacial fluid slab immersed in which is a
monodisperse population of spherical particles that can im-
press forces on each other (giving viscoelastic properties to
the effective interface). The calculations of Tambe and
Sharma invoke properties of three-dimensional, symmetric,
bulk suspensions to determine the hydrodynamic contribu-
tion to a general interfacial stress, which contains additional,
elastic, interparticle contributions, recall, to predict an effec-
tive interfacial viscosity over a range of surface coverage up
to about 70%.

Second, in Ref. [17], Henle and Levine consider transport
in cellular membranes using as a model a two-dimensional
membrane fluid decorated by a small population of flat 2D
disks each of radius a. After the manner of Einstein, these
workers obtain an expression for the effective surface shear
viscosity, 7, as a function of the two-dimensional mem-
brane fluid’s viscosity, the surface volume fraction of disks
and the parameter:

loy= nu/7, (2)

where [ is the Saffman-Delbriick length scale [18]. In the
last equation, 7 is the bulk three-dimensional fluid’s shear
viscosity. Henle and Levine [17] achieve a description that
exposes the role of the Saffman-Delbriick length scale.

In contrast to the above two works, we give in the next
section a rather more direct derivation, after Einstein [15],
but here for the surface shear and dilational viscosities of a
flat interface populated by symmetrically embedded, fully
three-dimensional, monodisperse, micron-scale, spherical
particles assumed to have a diameter that is very large rela-
tive to the interface cross section (which we consider to be
molecular). Put another way, our assumptions in respect of
length scales permit us to neglect all fluid-fluid interface
structures. This assumption is completely consistent with an
analysis aimed at the continuum regime. It means, however,
that all the calculations presented in the next section must be
taken to apply in the limit of large e=a/l,. In support of this
assumption, we note that, for typical liquids, without the
presence of any surfactant, the length / is indeed very small
compared with a micron-scale particle. Our analysis further
contrasts with previous works in that it accounts for a shear
viscosity contrast between the separated bulk liquids and it
also contains only directly measurable parameters of sepa-
rated fluids’ shear viscosities and particles’ radius.

We shall neglect the effects of contact line slip in our
analysis and, again, suppose the discontinuous continuum
interface to have no structure whatsoever. We shall further
assume a large interfacial tension. The need for the latter
assumption is explained in Appendix A.

e=ally,
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III. SURFACE VISCOSITIES AT LOW CONCENTRATIONS

In this section we obtain, in a compact analysis, by a
direct and transparent generalization of Batchelor’s analysis
of suspensions [19] both the surface shear and the surface
dilatational viscosity. We consider the steady state of a flow
of a system of solid spherical particles of radius R, trapped at
the flat interface between two incompressible fluids, desig-
nated 1 and 2, with densities p; and shear viscosities 7, 1
=1,2. We shall assume that the interfacial tensions favor a
contact angle 7r/2, so that, in equilibrium, the fluid interface
is planar and the centers of particles are located in the inter-
facial plane.

Consider a volume, V, occupied by two incompressible
fluids, each of equal volume, V/2, divided by a flat interface
of area A, supposed to lie in the x-y plane. We define the
surface concentration of particles as

7TR’N
i

¢= 3)
with N being the number of particles in area A.

We shall consider the shear flow in the system with the
motion of the fluid when unperturbed by particles being de-
scribed by the velocity field

o= ayp;, )
where the rate-of-strain tensor, ajjs is symmetric, traceless,
and constant. The applied rate of strain, «;;, is supposed to be
small and the unperturbed pressure is taken to be zero. The
particle-laden interface is supposed always to be flat (see
Appendix A).

It is well known that a shear flow distribution may be
decomposed into a symmetric shear (which, on general
grounds of symmetry, exerts no torque) and a rotation. By
considering the motion in an appropriately chosen uniformly
rotating rest frame, we need concern ourselves solely with
the dissipation associated with a symmetric shear. Further, to
ensure that the velocity is parallel to the interfacial plane XY,
the symmetric rate-of-strain tensor has to have the form

S Sy 0
a=|S, S, 0 [, (5)
0 0 a
where
1{dv; dv,;
Si/=_(—vl+i> (6)
T2\ dx;  Ox;

]

is 2 X2 surface rate-of-strain tensor, and «,,=-S,,—S,,, to
ensure the incompressibility of the fluids.

To find an expression for the effective surface shear vis-
cosity of the particle-laden interface as a whole, we shall
compare expressions for the rate of viscous dissipation cal-
culated in two cases. We shall shortly consider a particle-
laden interface explicitly. First let us approximate the system
as having an effective continuum interface with effective di-
lational and shear viscosities {, and 7,, respectively.

Consider a sphere of radius r, exactly divided into two
hemispheres of equal volume by the interface. The area of

yy?
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the interface contained within this control volume is
A=arl. (7)

In the case of an effective continuum interface, the rate of
viscous dissipation in the bulk liquids contained within our
control volume is obtained by an appropriate volume integra-
tion [20],

(0) (0)\2
I S
2>0,r<r Xj Xi

(0) 0)\2
Jv; av;
_EJ <_1+_.L) dV, (8)
2 <Or<ry \ O%; ox;

in which dV denotes the volume element. With the (shear)
velocity distribution identified in Eq. (4), Eq. (8) predicts, for
the effective continuum system, the following dissipation
rate:

. 2
El(a?u)lk == 5777’(3)( m+ 772)aijaij~ )

Additionally, of course, there is dissipation due to surface
flow given by

. 1 /(s &U,» v;
Esurf=—5f cr,f)<0—+—i>dA, (10)
A xJ‘ &xl-

where (rf‘?) is the surface viscous stress tensor, which has the

form [21ﬁ
Uilj(S) = {SSij+ MEijiSis (11)
with

Ejjj = 6y0j+ 66 — 66 (12)
where, again, {, is the dilational (compressional) viscosity
and 7, is the surface shear viscosity. For the flow given by
Eq. (4) with rate of strain (5), the rate of viscous dissipation
Eq. (10) takes the form

Esurf=—A[277sSijSij+ (& - Us)(Skk)z]- (13)

Next we proceed to obtain our second expression for the
rate of viscous dissipation. Consider a single particle, located
at the origin (see Fig. 1) in a very thin (i.e., unstructured),
flat, sheared interface. Then, due to the symmetry of the
problem and the kinematic condition of impenetrability, the
velocity field in both the separated fluids is the same and
identical to that of associated with the same particle sus-
pended in a single homogeneous fluid. This velocity field is,
note, independent of the fluids’ shear viscosities: it is the
well-known Stokes’ regime result [20] adapted for the unper-
turbed flow in Eq. (4):

RS

5 3
o 5(& R
T2

-— |lagnnn; —
r4 r2> gty
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FIG. 1. A solid spherical particle (indicated by the solid line)
embedded in the fluid-fluid interface, which lies in the z=0 plane.
The origin of coordinates, O, is taken to lie at the center of the
spherical particle. Elements of our Cartesian and spherical-polar
coordinate systems are shown. In particular, the z axis of the Car-
tesian system coincides with the normal to the fluid-fluid interface.
For z>0(z<0) fluid is taken to have shear viscosity 7,(7,). Fluid
velocity vectors corresponding to a symmetric shear flow (our as-
sumed unperturbed flow) are drawn in the plane z=0 (only).

R3 3

Snlﬁa,»_,-n,nj, P(2)=—5ﬂ2?aij”i”j’ (15)

=

in which r is the radial coordinate and n is the unit radial
vector (see Fig. 1) over the particle surface. In the last equa-
tion, p(p?) is the pressure within fluid 1 (2). We reserve
further discussion of this solution and, in particular, the pres-
sure field to Appendix A.

We now proceed to determine the dissipation rate when
particles are explicitly accounted for. Following Batchelor
[19], we exploit the symmetry of the problem in the rest
frame of a single particle (see above) and consider dissipa-
tion inside the finite spherical region which is bisected by the
interface, z=0, to form a pair of hemispherical regions z
<0, z>0 (see Fig. 1). The upper (lower) hemispherical sur-
face of this region is embedded in the fluid with shear vis-
cosity 7,(7,) and is denoted by a,(a,). The full spherical
surface, which is denoted by A;, contains a volume V. Re-
calling that the unperturbed pressure has been taken to be
zero, the rate at which forces do work on this external
boundary is obtained from the expression [19]

aikf (0'5;) +2ma;)xm,dA + aikJ (O'g) +2ma;)xn;dA.
aj a

(16)
In the last equation, the excess strain rate,
1] o d
S=—| — =0+ —(, =0 |, 17
z{axiw,, M wimel?) (17)
defines the excess stresses of each of the two fluids:
() _ I _
o =-pP;+29,5; I=12. (18)

Note, for a homogeneous system, with no surface effects, the
expression in Eq. (16) would evaluate to
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(3 )2n(3) |
@l 2m\ 5 | +2m| || (19)

Viscous dissipation within the fluid bounded, externally,
by A; and, internally, by the particle surface, is assumed to
account for the work identified in expression Eq. (16). Fur-
ther, Batchelor’s use of the divergence theorem [19] is not
obstructed by the albeit discontinuous change in the value of
shear viscosity on the external boundary A; and within the
volume V, so the gradient terms (in S;;) in expression of Eq.
(16) may be transformed to surface contributions from the
internal particle surface, together with a volume integral of
“divergence” &j(af.;)xk), which vanishes in the steady Stokes
flow regime (since do;/ dx;=0). The expression in equation
Eq. (16) then becomes

-2R Uil aikaijf n,nde - 2R ﬂzaikaijf n]n](dA

51 52

+ aikf O'l(-} )xknjdA + a,-kJ O'g)xknjdA, (20)
s Y

21 °2

where s5,(s,) denotes the upper (lower), internal surface of
the particle (radius R, recall) and n,; the k component of the
unit surface normal, i.e., the kK component of the unit radial
vector. Note that contributions from surface integrals of
stress over the flat volume-bisecting interface, A, do not ap-
pear in Eq. (20) for such contributions cancel, because of the
boundary conditions on stress at a plane interface. With the
help of Egs. (14) and (15) and the fact that

27R?
R| nmdA=—->5
5

1)

ij>

(as is straightforwardly verified) the viscous dissipation in

the particle system, Epm, may now be calculated from well-
behaved surface integrals performed over internal particle
surfaces s, and s,, using Egs. (14), (15), and (18). Finally,
supposing N particles all to be mutually separated by
distances large compared with R, the disturbance flow
(v ,»—vl(-o)) due to one particle will be small close to any other,
we obtain

. 107
Epari=— 7(7]1 + MR ayayN, (22)
which, using Eq. (3) can be written as
. 10
Epar=— ?(771 + m)RayayAd. (23)

Substituting, according to Eq. (5), a;a;=SySi+(Sw)? we
finally obtain

. 10
Epai=— ?(771 + M)R[SySi + (Sp) 1A . (24)

Supposing that the additional dissipation expressed above
is attributable to the effects of the interfacial particles, and
therefore equating the right-hand sides of Egs. (13) and (24),
we finally obtain for the effective viscosities of a discontinu-
ous interface between fluids of shear viscosity #; and 7,

PHYSICAL REVIEW E 80, 016306 (2009)

decorated with spherical particles of radius R:

5
7= 5(771 + m)RP (25)
and

4=5(n + MR . (26)

Wilson and Davis [22] have, using different methods, de-
rived results that agree with Eq. (25). A critical point to note
in respect of our own analysis is that it has been possible, in
the above manner, to derive the dilational surface viscosity,
by considering an appropriate shear flow of bulk incompress-
ible fluid. This is comparable to the situation when, in three
dimensions, one considers a compressible flow to obtain the
expression for the effective bulk viscosity of suspensions
[23]. Further support for our analytical results of this section
may be obtained from computer simulations, which we now
proceed to consider.

IV. SURFACE SHEAR VISCOSITY AT HIGHER
CONCENTRATIONS

In this section we calculate effective surface shear viscos-
ity of a particle-laden fluid interface at larger concentration
of particles and so extend our investigation to larger concen-
trations. In order to do this we employ the modification of
the lattice Boltzmann method [24] used previously to calcu-
late the suspension viscosity by the direct calculation of dis-
sipation in simulations bounded by modified Lees-Edwards
(LE) periodic boundary conditions [25].

Consider a three-dimensional volume V=AXL =L XL,
X L, filled with incompressible fluid. N spherical particles
are immersed into the fluid and their centers are confined in
the X-Y plane (z=0). This corresponds to the special case of
the original system in which both fluids have the same den-
sity and viscosity, and the surface tension is strong enough to
prohibit motion of particles perpendicular to the interface. In
the present context, although the particles are confined to the
interfacial plane, their surface boundary conditions (which
correspond to no-slip) in no way prevent their free rotation.

Periodic boundary conditions are applied in three direc-
tions. Constant shear in X-Y plane is imposed by using Lees-
Edwards boundary conditions [26,27] in Y direction, which
provides the constant difference v,y in v, component of ve-
locity between planes y=0 and y=L,. The details of the lat-
tice Boltzmann algorithm used in the present paper are given
in Appendix B.

After the procedure in Sec. III, we write the energy dissi-
pation in the volume V as

. Jv; ﬁvi 2
E=—1]f (—u—) dav (27)
2 1% &xi (9)(:]
7 du; Jv; 2
B =) A, (28)
2 A a.xi (9)CJ

and using
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FIG. 2. Dependence of surface shear viscosity upon surface con-
centration. Points are calculated by LB simulation; line corresponds
to Eq. (25).

Jv; aUl'

4 J

we obtain straightforwardly the formula for simulation data
analysis,

1.
SE=(Vn+an)ag, (30)
or, on observing aé:(vLE/Ly)z,
L (VA Vi 31)
~E= + -
2 n s Li
Once E has been measured [25] within a chosen volume,
V, and interfacial region, A, for a chosen lattice fluid shear
viscosity, 7, (see Appendix B), v, and L,, Eq. (31) may be
used directly to evaluate an effective surface viscosity, 7,.
Figure 2 presents the effective shear viscosity obtained for
different sizes and concentrations of particles compared with
Eq. (25). The agreement is satisfactory for

$=0.15. (32)

Inequality (32) gives the region of applicability of low-
concentration formula (25). Our results are, again, in agree-
ment with those of Wilson and Davis [22].

V. CONCLUSION

In the main result of this paper, we have obtained, from a
calculation performed in the continuum approximation of
large e=a/l, (where [, is the Saffman-Delbriick length [see
Eq. (2)]), a simple expression for the steady effective surface
shear viscosity of a two-dimensional colloid system com-
prised of widely separated spherical particles at the interface
between two immiscible liquids, for the special case of a
solid-fluid contact angle (between particles’ surface and
fluid-fluid interface) of 7/2 rad. The result, given by Eq.
(25), is demonstrated to give satisfactory agreement with
multicomponent lattice Boltzmann equation method simula-
tions for concentration of particles up to ~0.15. While the
experiments of Cicuta et al. [28], reporting data on elastic,
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G’, and viscous, G”, interfacial shear moduli and concerning
much larger particle concentrations, do not resolve the re-
gime of our calculation in sufficient detail to make compari-
son possible, it can be claimed that these data are, very
broadly, in agreement with ours.

The result, Eq. (25), can be used directly for low-
concentration systems or as a starting point for several ex-
tensions. These may include particle-laden fluid interfaces
with arbitrary contact angles, larger concentrations of par-
ticles, nonhydrodynamic interactions between particles, an-
isotropic particles (e.g., ellipsoids, rods), anisotropic fluids
(e.g., nematic liquid crystals), polydisperse particles, higher
shear rates, and time-dependent flows (shear viscoelastic
modulus). We hope that this work is a step toward the solu-
tion of the problem of characterization of effective viscoelas-
tic properties of particle-laden fluid interfaces basing on the
properties of constituent particles and fluids.

APPENDIX A: CONFIGURATIONAL STABILITY

Figure 1 shows a single solid spherical particle embedded
in the fluid-fluid interface, which is taken to lie in the z=0
plane. The origin of coordinates, O, is taken to lie at the
center of the sphere. Elements of Cartesian and spherical
polar coordinate systems are shown. In particular, the z axis
of the Cartesian system coincides with the normal to the
fluid-fluid interface. For z>0(z<<0), fluid is taken to have
shear viscosity 7,(7,). The shear flow, indicated by solid
arrows, lies in the plane of the interface, z=0. For any point,
P, on the spherical particle surface, the surface normal direc-
tion, n, lies in the radial direction, n=e,. The ¢ coordinate
curve corresponding to point P is drawn simply to demon-
strate that, for all ¢, e, has zero projection onto the z axis:
e,e.=0.

The configuration is stable if (i) the interface between
fluids remains flat and (ii) the centers of the particles remain
in the interfacial plane. We shall estimate the criteria that
should be satisfied by the shear rate for these two conditions
to hold.

Equation (15), for the pressure field, shows that a pressure
difference ~|7,— 7]2|a/,~_,- exists between the fluid in z>0 and
that in z<<0, a quantity proportional in magnitude to the
shear viscosity contrast. Such a pressure difference must be
balanced by the pressure due to curvature in the interface,
~7/R (7is surface tension). This curvature will be small for
shear rates, which satisfy

T

;< ———— (A1)
" |- mlR

Next we calculate the distribution of force, F, acting over the
surface, r=R, of the interface-embedded solid particle. In our
Cartesian coordinate system of Fig. 1, the components of the
stress tensor may be obtained, on r=R, by substituting a
velocity obtained from Eq. (14) into the definition of the
stress, 0 =—pd;+n(dp;+dv;), then setting r=R in the re-
sulting expressions. The resulting surface force, F;
=Js,+5,[Oij]r=rn;dA (notation of Sec. III) may, straightfor-

wardly, be shown to be
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F,=F,=0, F.,=57R*(n - p)e,.. (A2)

There is no resultant force on the sphere in the z or y direc-
tion. The component F, of the force is counterbalanced by
the force F=2m7q. where g.=r.sin ¢ is the “capillary
charge” of the particle, .=~ R is the radius of the contact line,
and ¢ is the meniscus slope angle [29]. The value =0 cor-
responds to the flat interface. The requirement << 1 leads to
the same form of the stability criterion as given by Eq. (A1).

Substituting into Eq. (Al) the typical values 7
~ 1072 J/m?, |5, — 7| ~ 1073 kg/m's, R~ 107> m yields in-
equality for the shear rate aij<106 s!, which is a rather
weak requirement.

APPENDIX B: SIMULATION METHOD

This appendix summarizes the method of Ref. [25] and its
adaptation to the present problem. The single-time relaxation
LB method, also known as lattice Bhatnagar-Gross-Krook, is
defined by the evolution equation for the momentum distri-
bution function f; [24]:

fe i+ 1) =00 - <0 - (W] (B1)

fi represents a population of particles with velocity ¢;; the set
¢; defines the lattice. Associated with link 7 is weight 7,. The
values of ¢;’s and equilibrium distribution f; for the D3Q15
lattice used here are defined in Ref. [25]. The nodal density,
p, and the nodal momentum, pu, are defined by the moments
of f; with ¢;. Parameter 7 (BGK relaxation time) determines
the lattice fluid’s kinematic viscosity v:é(2r— 1) [24].

N particles of radius R are inserted at random positions in
the plane z=0. The particles are allowed to move in this
plane and rotate around the normal to the plane. We treat the
particle interior as being occupied by a fluid in a state of
uniform translation and rotation determined by the motion of
the particle boundary. On the particle surface we use a type
of no-slip boundary condition given by Ladd [30]:

2pt
f—i(rw’t"' l)zfi(rwat)+ 72(Wk'cl)’ (Bz)
where w; is the velocity of the boundary of the kth particle,
c,=1/+3 is the speed of sound for D3Q15 model used in this
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study the weights, 7,, of which are defined in Ref. [25].
Equation (B2) represents the effect of moving particles’
boundaries on the embedding fluid and can be used to com-
pute the effect of forces and torques impressed upon the
particles by the fluid. Because we investigate the low surface
particle concentration, we omit the sublattice lubrication
force for particles in close approach, inserted into this algo-
rithm by Nguyen and Ladd [31].

LE boundary conditions [26], after Wagner [27], are ap-
plied in this study. For embedded particles migrating across
the LE boundary, any portion of the particle surface that has
passed the boundary is reintroduced (from the periodic rep-
lica) having been displaced and accelerated. For a boundary
parallel to the shear direction, e,, the reentrant portion of a
crossing particle is displaced (advected) by the action of the
LE velocity v, ze, through distance v, e, Ar (with the simu-
lation time step Az=1) and accelerated by addition of the LE
velocity v, ze,. Wagner’s method is applied to all (including
interior) fluids at the LE boundary. Update of particle posi-
tion and velocity on the LE boundary is made after the LB
collision step.

To calculate total dissipation using Eq. (31), the appropri-
ate velocity derivatives are evaluated from a discrete ap-
proximation nonlocally using the isotropy properties of the
D3Q15 lattice:

du, 1
— = ?E Lyt o(T + ¢;)cig+ o(c?).
s i

Data for a range of particle sizes were obtained on a lattice of
size 128 X 128 X 128. The fluid was initialized to a uniform
density p=1.8. The value of the relaxation parameter 7=1.0
used corresponds to an optimum of performance in locating
the boundary using bounce-back boundary conditions [24]. A
number N=1,...,36 of particles of radii R=6,7,8,10 were
considered. LE boundary conditions were imposed by a LE
velocity v;;=0.05. An effective hydrodynamic radius of the
particles was obtained by correction R— R+AR with AR=
—-0.78 [25]. In all cases the Reynolds number Re
=v,£R?/(L,v) did not exceed the value 0.25, which is small
enough to signify a linear rheological response.
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